Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Moloy Sarkar and Anunay Samanta*

School of Chemistry, University of Hyderabad, Hyderabad 500 046, India

Correspondence e-mail: assc@uohyd.ernet.in

## Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
$R$ factor $=0.064$
$w R$ factor $=0.175$
Data-to-parameter ratio $=13.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

## 10,10'-Dibromo-9,9'-bianthryl

In the title compound, $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{Br}_{2}$, the two anthryl moieties are almost perpendicular to each other; the dihedral angles between the anthryl planes are 89.42 (9) and 82.36 (7) ${ }^{\circ}$ in the two independent molecules, one of which lies on a crystallographic twofold rotation axis. An interesting feature of the crystal structure is the presence of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

## Comment

Photo-induced charge separation in molecular systems is a process in which there is considerable interest because of the importance of the electron/charge-transfer process in photosynthesis and solar energy conversion. Symmetric bianthryl derivatives are attractive candidates for the study of charge separation on photo-excitation through symmetry breaking (Piet et al., 2001). Taking this into consideration, we have initiated studies on various bianthryl derivatives, such as the title compound, (I), and 10,10'-dicyano-9,9'-bianthryl. Since the dihedral angle between the two anthryl moieties controls the extent of charge separation in bianthryl derivatives, we have determined the crystal structure of (I).


The asymmetric unit contains a complete molecule, together with half a molecule; this second molecule lies on a crystallographic twofold rotation axis. Apart from finding that the two anthryl moieties are almost perpendicular to one another [the dihedral angles are 89.42 (9) and 82.36 (7) ${ }^{\circ}$ in the two independent molecules], we observe that the crystal stucture is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interactions involving an aromatic $\mathrm{C}-\mathrm{H}$ of one molecule and the aromatic ring of an adjacent molecule. The distance between the H atom to the centroid of the aromatic ring varies between 2.75 and $3.10 \AA$.

## Experimental

Bianthryl was synthesized according to the procedure reported by Bell \& Waring (1949). Bianthryl was then treated with bromine at 273 K to obtain the title compound, following the procedure

Received 26 September 2003
Accepted 8 October 2003
Online 23 October 2003
suggested by Müller \& Baumgarten (1995). Crystals suitable for X-ray diffraction were grown by slow evaporation of a solution of (I) in chloroform-methanol (1:4).

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{28} \mathrm{H}_{16} \mathrm{Br}_{2} \\
& M_{r}=512.23 \\
& \text { Monoclinic, } C 2 / c \\
& a=24.818(6) \AA \\
& b=20.677(4) \AA \\
& c=14.473(5) \AA \\
& \beta=124.5(2) \AA \\
& V=6114(3) \AA^{\circ} \\
& Z=12
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.669 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=9.4-10.5^{\circ} \\
& \mu=3.99 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Rectangular block, brown } \\
& 0.58 \times 0.46 \times 0.40 \mathrm{~mm}
\end{aligned}
$$

## Data collection

| Enraf-Nonius MACH3 four-circle | $R_{\text {int }}=0.034$ |
| :--- | :--- |
| $\quad$ diffractometer | $\theta_{\text {max }}=25.0^{\circ}$ |
| $\omega$ scans | $h=0 \rightarrow 29$ |
| Absorption correction: $\psi$ scan | $k=0 \rightarrow 24$ |
| $\quad$ (North et al., 1968) | $l=-17 \rightarrow 14$ |
| $T_{\min }=0.127, T_{\text {max }}=0.203$ | 3 standard reflections |
| 5669 measured reflections | frequency: 90 min |
| 5380 independent reflections | intensity decay: none |
| 3109 reflections with $I>2 \sigma(I)$ |  |

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.175$
$S=1.02$
5380 reflections
406 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0738 P)^{2}\right. \\
& \quad+27.1434 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.60 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.74 \mathrm{e}^{-3}
\end{aligned}
$$

## Table 1

Selected geometric parameters ( $\AA^{\circ},{ }^{\circ}$ ).

| $\mathrm{Br} 3-\mathrm{C} 41$ | $1.895(7)$ | $\mathrm{C} 6-\mathrm{C} 7$ | $1.391(9)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Br} 2-\mathrm{C} 20$ | $1.896(7)$ | $\mathrm{C} 6-\mathrm{C} 27$ | $1.496(8)$ |
| $\mathrm{Br} 1-\mathrm{C} 13$ | $1.889(7)$ | $\mathrm{C} 26-\mathrm{C} 27$ | $1.416(9)$ |
| $\mathrm{C} 5-\mathrm{C} 6$ | $1.415(9)$ | $\mathrm{C} 27-\mathrm{C} 28$ | $1.379(9)$ |
|  |  |  |  |
| $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ | $122.8(6)$ | $\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$ | $125.5(7)$ |
| $\mathrm{C} 14-\mathrm{C} 13-\mathrm{Br} 1$ | $119.4(6)$ | $\mathrm{C} 28-\mathrm{C} 27-\mathrm{C} 6$ | $119.7(6)$ |
| $\mathrm{C} 12-\mathrm{C} 13-\mathrm{Br} 1$ | $118.1(6)$ | $\mathrm{C} 26-\mathrm{C} 27-\mathrm{C} 6$ | $119.1(5)$ |
| $\mathrm{C} 19-\mathrm{C} 20-\mathrm{Br} 2$ | $117.4(6)$ |  |  |

All H atoms were positioned geometrically and treated as riding, with a C -H distance of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: WinGX (Farrugia, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (Version 6a; McArdle, 1995); software used to prepare material for publication: SHELXL97.

Financial support for this work was provided by the Department of Science and Technology (DST) and the Council of Scientific and Industrial Research (CSIR). MS thanks the CSIR for a research fellowship. The structure determination was performed at the National Single Crystal Diffractometer Facility (funded by the DST), School of Chemistry, University of Hyderabad.


Figure 1
The structure of one independent molecule of the title compound, showing $40 \%$ displacement ellipsoids and atom-labelling scheme.


Figure 2
Various $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in the crystal structure of the title compound.

## References

Bell, F. \& Waring, D. H. (1949). J. Chem. Soc. 149, 267-269.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
McArdle, P. (1995). J. Appl Cryst. 28, 65.
Müller, U. \& Baumgarten, M. (1995). J. Am. Chem. Soc. 117, 5840-5850.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Piet, J. J., Schuddeboom, W., Wegewijs, B. R., Grozema, F. C. \& Warman, J. M. (2001). J. Am. Chem. Soc. 123, 5337-5347.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

